Imaging quick changes with an EMCCD Astronomy Camera

Flickering Aurora

Imaging the Quick Changes of Flickering Aurora with an EMCCD Astronomy Camera

Imaging the Quick Changes of Flickering Aurora with an EMCCD Astronomy Camera
Figure 1: This figure shows an example of a high-frequency auroral event. From top to bottom, (a) the dynamic spectrum of north-south component, (b) east-west component of ELF magnetic field data, (c) dynamic spectrum of electron multiplying CCD image data averaged at the center 16 pixels, (d) electron multiplying CCD keogram of north-south direction, and (e) 2DFFT dynamic spectrum of north-south and (f) east-west directions.

Image reproduced by permission of the American Geophysical Union from Ayumi Yaegashi et al, Spatial-temporal characteristics of flickering aurora as seen by highspeed EMCCD imaging observations, Vol. 116, A00K04.

The beautiful light displays known as aurora occur when energetic charged particles collide with atoms in the high-altitude regions of the atmosphere. One type of aurora, known as flickering aurora, rapidly fluctuates in a manner similar to the reaction of a candle’s flame to a sudden draft of air.

Researchers from Tohoku University in Japan used an Andor iXon electron multiplying CCD (EMCCD) astronomy camera to learn more about flickering aurora. This type of aurora occurs only near the time of the auroral breakup, which is when the arcs of light rapidly grow brighter and twist into contorted shapes that sweep across the sky.

Scientists believe that the generation of flickering aurora is related to auroral particle acceleration and wave-particle interactions that occur in the region where the Earth’s magnetosphere and ionosphere meet. The magnetosphere is formed by the Earth’s magnetic field interacting with and deflecting charged particles coming from the sun, and the ionosphere is the upper part of the Earth’s atmosphere that is ionized by solar radiation.

The researchers sought to better characterize the spatiotemporal characteristics of flickering aurora. “Field-aligned acceleration processes existing in the altitude range of several thousands of kilometers play a crucial role in the generation of auroras,” said Takeshi Sakanoi, who was part of the research team. “Understanding these processes is one of the most important issues in our research field - magnetosphere-ionosphere physics - as well as in fundamental plasma physics which is used in, for example, plasma fusion.”

However, flickering aurora are difficult to study because of how fast they modulate and because of their weak intensity. Thus the researchers, led by Shoichi Okano, turned to an iXon EMCCD astronomy camera from Andor Technology to allow them to observe the flickering aurora. "The Andor camera was important to our experiment because the iXon's electron multiplication and binning abilities allowed us to operate at an effective speed and derive spatial information. The camera features allowed us to discover new, previously unobserved types of flickering aurora " Sakanoi said.

The researchers made observations at the Toolik Field Station and the Poker Flat Research Range in Alaska during the winter. They used the iXon EMCCD astronomy camera with a 50 mm F1.2 lens and a 670 nm filter to measure allowed transition emissions from N2 1st positive band, operating at 100 Hz sampling rate. The field of view was 9.3° X 9.3°, which is about 16 X 16 km at 100 km altitude. They operated the EMCCD with a 64 X 64 pixel mode (8 X 8 binning for the entire 512 X 512 pixels).

With the EMCCD, the researchers were able to acquire images of some new types of flickering aurora. They observed high-frequency events (greater than ~15 Hz, see figure), low-frequency events (less than ~15 Hz) with rotating features, and flickering stripes. They found that many of the flickering aurora events were in the high-frequency range.

"With the advanced electron multiplying CCD technology, we could acquire auroral images with high temporal resolutions,” Sakanoi said. "As a result, we found flickering auroral variation in a very high frequency range. This characteristics must closely related to the acceleration process and should be helpful to understand it."

Multimedia Library
Application Images (41)
Show more
Application Movies (3)
Publications Database
The bright star survey telescope for the planetary transit survey in Antarctica
Evaluation of genetic damage in tobacco and arsenic exposed population of Southern Assam, India using buccal cytome assay and comet assay
Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress
First Demonstration of Imaging Cosmic Muons in a Two-Phase Liquid Argon TPC using an EMCCD Camera and a THGEM
The state of Pluto's atmosphere in 2012–2013
Study of three 2013 novae: V1830 Aql, V556 Ser and V809 Cep
The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet
Optimising the signal-to-noise ratio in measurement of photon pairs with detector arrays
Statistics of twin-beam states by photon-number resolving detectors up to pump depletion
The Einstein-Podolsky-Rosen paradox in twin images
Spatial properties of twin-beam correlations at low-to high-intensity transition
Coherence properties of high-gain twin beams generated in pump-depletion regime
The planetary nebula IPHASXJ211420. 0+ 434136 (Ou5): insights into common-envelope dynamical and chemical evolution
Precursor flares in OJ 287
Comprehensive time series analysis of the transiting extrasolar planet WASP-33b
The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera
Finding Very Small Near-Earth Asteroids using Synthetic Tracking
EMCCD photometry reveals two new variable stars in the crowded central region of the globular cluster NGC 6981
The Next Generation Transit Survey (NGTS)
High-speed photometry of faint cataclysmic variables-VIII. Targets from the Catalina Real-time Transient Survey

Sign up for the Andor Newsletter Now!

Receive articles like this one, product launches, press releases and more with our quarterly newsletter focusing on either Physical Science or Life Science. It's free to subscribe and you can opt out at any time.


Physical ScienceLife ScienceSUBMIT