An overview of Andor's solutions for FRET

FRET (sometimes called Förster Resonance Energy Transfer), is an increasingly popular microscopy technique used to measure the proximity of two fluorophores.Resonance energy transfer occurs only over very short distances, typically within 10nm, and involves the direct transfer of excited state energy from the donor fluorophore to an acceptor fluorophore as an alternative to fluorescence emissive decay from the donor. Upon transfer of energy, the acceptor molecule enters an excited state from which it decays emissively (always of a longer wavelength than that of the acceptor emission). Thus, by exciting the donor and then monitoring the relative donor and acceptor emissions, either sequentially or simultaneously, one can determine when FRET has occurred and at what efficiency.Since fluorophores can be employed to specifically label biomolecules and the distance condition for FRET is of the order of the diameter of most biomolecules, FRET is often used to determine when and where two or more biomolecules, often proteins, interact within their physiological surroundings. Since energy transfer occurs over distances of 1-10nm, a FRET signal corresponding to a particular location within a microscope image provides an additional distance accuracy surpassing the optical resolution (~0.25 mm) of the light microscope. Aside from spatial proximity, for efficient FRET to take place the FRET dye pair must also exhibit significant overlap of the donor's excitation spectrum with the acceptor's absorption spectrum. Herein though lies one of the experimental paradoxes of FRET. The spectral profiles of the FRET pair cannot be so separated that we have poor overlap, yet one wants to avoid "cross-talk" between the two imaging channels, i.e. ideally the donor emission filter set must collect only the light from the donor and none from the acceptor, and vice versa. In practice, this can be somewhat realized by employing short bandpass filters that collect light from only the shorter wavelength side of the donor emission and the longer wavelength side of the acceptor emission. This can limit somewhat the photon flux from both donor and acceptor during a typical exposure, especially when we bear in mind that these measurements are best performed under conditions of reduced excitation power, such that we do not accelerate the rates of bleaching.

BFP-GFP; CFP-dsRED; BFP-GFP; Cy3-Cy5; CFP-YFP Alexa488-Alexa555; Alexa488-Cy3 FITC-TRITC; DiSBAC4(3)-CC2-DMPE (a voltage sensitive FRET pair)

Fluorescence Resonance Energy Transfer
Absorption and emission spectral profiles of the CFP-YFP FRET pair.

Andor's EMCCD cameras, whether as a key component in our Revolution confocal live cell imaging system, or as an EMCCD + iQ imaging software solution, is a well-established technique for FRET imaging. EMCCD enables high resolution, high signal-to-noise (S/N) determination of FRET interactions throughout the imaged area or volume of the cell and help counter the photon throughput sacrifice involved when using narrow-band filters This combined with careful choice of filter sets ensures high integrity of FRET data.Since EMCCDs overcome the noise floor detection limit at any readout speed, molecular interactions can be followed dynamically with high accuracy. Furthermore, through reducing the excitation power, phototoxic and photo-bleach effects are minimized, enabling molecular interactions to be followed for much longer periods.

Multimedia Library
Application Images (104)
Show more
Application Movies (57)
Publications Database
Submicron thermal imaging of a nucleate boiling process using fluorescence microscopy
Evaluation of genetic damage in tobacco and arsenic exposed population of Southern Assam, India using buccal cytome assay and comet assay
Transient submicron temperature imaging based on the fluorescence emission in an Er/Yb co-doped glass–ceramic
Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress
Anisotropic stress orients remodelling of mammalian limb bud ectoderm
An in vitro model of tissue boundary formation for dissecting the contribution of different boundary forming mechanisms
Gap geometry dictates epithelial closure efficiency
The EHD protein Past1 controls postsynaptic membrane elaboration and synaptic function
Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon
In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy
Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle
The role of Ca2+ influx in spontaneous Ca2+ wave propagation in interstitial cells of Cajal from the rabbit urethra
A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells.
Neuronal activity and AMPA-type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells
Systematic imaging reveals features and changing localization of mRNAs in Drosophila development
Interkinetic Nuclear Migration Is Centrosome Independent and Ensures Apical Cell Division to Maintain Tissue Integrity
Functionalized fluorescent silver nanoparticle surfaces for novel sensing and imaging techniques
Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis
Signal inhibition by a dynamically-regulated pool of mono-phosphorylated MAPK
Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function

Sign up for the Andor Newsletter!

Receive articles like this one, product launches, press releases and more with our quarterly newsletter focusing on either Physical Science or Life Science. It's free to subscribe and you can opt out at any time.


Physical ScienceLife ScienceSUBMIT